15.2 Double Integrals over General Regions

In 15.2, we discuss regions, *R*, other than rectangles.

$$\int x + 3y^2 dA$$

$$R$$

$$Top \rightarrow bottom$$

$$Term$$

The surface $z = x + 3y^2$ over the rectangular region $R = [0,1] \times [0,3]$

The surface $z = x + 3y^2$ over the triangular region with corners (x,y) = (0,0), (1,0), and (1,3).

The surface z = sin(y)/y over the triangular region with corners at (0,0), (0, $\pi/2$), ($\pi/2$, $\pi/2$).

The surface z = x + 1 over the region bounded by y = x and $y = x^2$.

Setting up a problem given in "words":

1. Find integrand Solve for "z" anywhere you see it. y⁻ If there are two z's, then set up two double integrals (subtract at end).

2. Region?

Graph the region in the xy-plane.

- a) Graph given x and y constraints.
- b) AND find the xy-curves where the surfaces (the z's) intersect.

$$z=25-x^2$$
 intersect
 $z=0$ e Q $x=\pm5$

Example (directly from HW):

HW 15.1: Find the volume in the first y = 0 location for a location for location for location for a location for a l plane y = 1. \bigcirc Z5-R 9=1 (2) $\int \left(\int 2\mathfrak{S} - x^2 \, dx \right) \, dy$

HW 15.2: Find the volume enclosed by $z = 4x^2 + 4y^2$, x = 0, y = 2, y = x, and z = 0.

4x+4yzdk R

HW 15.3: Find the volume below $z = 18 - 2x^2 - 2y^2$ and above xy-plane. $\int \int |8 - 2x^2 - 2y^2 d\lambda$ R \mathcal{R}

18-2x2-2.42 = 0

HW 15.3: Find the volume enclosed by $-x^2 - y^2 + z^2 = 22$ and z = 5.

HW 15.3: Find the volume above the upper cone $z = \sqrt{x^2 + y^2}$ and below $x^2 + y^2 + z^2 = 81$

Volume enclosed by $-x^2 - y^2 + z^2 = 22$ and z = 5.

The volume above the upper cone $z = \sqrt{x^2 + y^2}$ and below $x^2 + y^2 + z^2 = 81$

Reversing the Order of Integration

1. Draw the region of integration for $\pi/2 \pi/2$ $\int_{0}^{\pi/2} \int_{x}^{\pi/2} \frac{\sin(y)}{y} \, dy \, dx$ then switch the order of integration.

2. Switch the order of integration for

$$\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin(y^3) \, dy \, dx$$